同步监测氧气和温度的新型便携式传感器

曹汇敏^{1,2,3}*,李发光^{1,2,3},戴乐荣^{1,2,3},吴超^{1,2,3},郑冬云^{1,2,3},朱春楠^{1,2,3}

1中南民族大学生物医学工程学院,湖北 武汉 430074;

2中南民族大学脑认知国家民委重点实验室,湖北 武汉 430074;

³医学信息分析及肿瘤诊疗湖北省重点实验室,湖北 武汉 430074

摘要 采用同时测量红绿蓝(RGB)三种颜色的数字颜色芯片,实现了一种同步监测氧气和温度的便携式传感器。 涂覆于颜色芯片上的传感膜由三种荧光染料嵌入有机改性硅溶胶凝胶基质构成。所有染料均用 405 nm 的发光二 极管光源激发,其荧光波长分别与颜色芯片的 RGB 三个通道相匹配且无光谱交叠。不同氧气浓度和温度下的实 验结果表明,所研发的传感器能有效地同步监测氧气和温度,且在氧气浓度为 0%~30% 和温度为 25~75 ℃时具 有良好的线性响应。

关键词 传感器;双传感;荧光传感器;氧气浓度;温度;数字颜色芯片 中图分类号 TP212.2 文献标识码 A

doi: 10.3788/AOS201939.0628004

Novel Portable Sensor for Simultaneous Monitoring of Oxygen and Temperature

Cao Huimin^{1,2,3*}, Li Faguang^{1,2,3}, Dai Lerong^{1,2,3}, Wu Chao^{1,2,3},

Zheng Dongyun^{1,2,3}, Zhu Chunnan^{1,2,3}

 $^{1} \textit{College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, Hubei 430074, China;}$

 $^{\scriptscriptstyle 2}$ Key Laboratory of Brain Cognitive Science , State Ethnic Affairs Commission ,

South-Central University for Nationalities, Wuhan, Hubei 430074, China;

³ Hubei Key Laboratory of Medical Information Analysis & Tumor Diagnosis and Treatment,

Wuhan, Hubei 430074, China

Abstract This study realizes a portable sensor for dual sensing of oxygen and temperature using a digital color chip with a simultaneous measurement function of three colors, namely, red-green-blue (RGB). An ormosil sol-gel matrix is doped in the sensing film coating on the color chip with three fluorescent dyes. All dyes are excited using a 405-nm light-emitting diode. The emission wavelengths match the three RGB channels of the color chip separately without a spectral overlap. Under various temperatures and oxygen concentrations, the experimental results show that the developed sensor allows a simultaneous monitoring of both temperature and oxygen with good stability and has an excellent linear response in the oxygen concentration range of 0%-30% and the temperature range of 25-75 °C.

Key words sensors; dual sensing; fluorescent sensor; oxygen concentration; temperature; digital color chip OCIS codes 280.4788; 160.4760; 160.467; 040.1880; 310.6845

1引言

氧气和温度与我们的日常生活息息相关,实时 准确地检测自然界各个领域的氧气浓度和温度对许 多行业(如环境监测^[1]、生物养殖^[2-3]、煤矿物质勘测 和燃烧环境^[4]等)的进步与发展起着至关重要的作用。目前,对氧气的检测方法主要有 Winkler 滴定法^[5]、Clark 电化学法^[6]和荧光检测法^[7-8]。Winkler 滴定法和 Clark 电化学法是用化学手段来实现氧气 浓度的测定,主要用于应用化学领域,其检测过程会

基金项目:国家自然科学基金(61178087,61501526,21804146)、中南民族大学中央高校基本科研业务费专项资金(CZZ17007,CZQ16011)

* E-mail: huimincao@mail.scuec.edu.cn

收稿日期: 2018-12-12;修回日期: 2019-01-06;录用日期: 2019-03-07

有消耗;荧光检测法是很多科研人员在氧气检测方 法的探索中研究的新方法,近期研究出的基于铂配 合物掺杂的 3,3,3 三氟丙基三甲氧基硅烷(TFP-TriMOS)/四乙基正硅烷(TEOS)/正辛基三乙基硅 烷(Octyl-tri EOS)复合干凝胶,具有高氧气渗透性 和优异的光学透明度,其力学性能良好、化学性稳 定,是较好的测氧基质材料。为了进一步提高氧传 感器的灵敏度,使用寿命较长的荧光氧敏感染料铂 四氟五氟苯卟吩(PtTFPP)^[9],基于PtTFPP 对氧气 的淬灭效应实现氧气浓度的检测^[10]。温度的检测 技术已非常成熟,其检测方法主要有接触式测温法 [膨胀式测温法(液体温度计、热电偶等),光电、热色 测温法]和非接触测温法(辐射式测温、光谱法测 温、激光干涉式测温以及声波测温方法等)。氧气和 温度测量系统的微小化集成成为研究热点。

在聚合物材料领域,聚合物薄膜作为一种新兴 聚合物材料引起了广泛关注,由于其吸附性和耐酸 碱性,通常在生物学研究中使用具有可变尺寸的聚 苯乙烯薄膜。使用不同方法合成的氧敏聚苯乙烯衍 生薄膜,其表面具有良好的力学性能和更高的透氧 性。将新的聚苯乙烯复合 PtTFPP 作为氧探针,以 实现对应式氧敏感薄膜。将荧光检测法应用于温度 的检测中以确保精确检测,根据氧敏感和温度敏感两 种材料的光谱有相近吸收峰和不同发射峰的特点,将 两种材料按一定比例混合。将 PtTFPP 和 7-氨基-4-三氟甲基香豆素(AFC)固定于多孔的复合凝胶薄膜 中,将其直接涂在颜色芯片的光敏区,传感膜被发光 二极管(LED)激发后,用 S9706 颜色芯片检测出氧 气、温度与 PtTFPP、AFC 敏感材料发生反应时荧光 强度的变化,实现氧气浓度和温度的监测。

2 原 理

敏感指示剂的荧光特性随氧气浓度和温度的变化而变化,采用荧光强度法测量稳态荧光强度或暂态荧光寿命。氧气是 PtTFPP 荧光指示剂的猝灭剂,在恒定光激发下,氧气浓度与其荧光强度具有定量关系,且符合 Stern-Volmer 方程:

$$\frac{I_{0}}{I} = 1 + k_{\rm SV} x_{(0_2)}, \qquad (1)$$

式中: I_0 和 I分别为无氧气和有氧气条件下的荧光 强度; $x_{(o_2)}$ 为氧气的浓度(体积分数); k_{sv} 为 Stern-Volmer 系数。为克服激发光源波动等因素的干扰, 采用对温度和氧气均不敏感的 Rh110 作为对照,用 Rh110 在绿色通道的荧光强度 G 值替代无氧气条 件下的荧光强度 I₀,氧敏感指示剂 PtTFPP 在红色 通道的荧光强度 R 替代有氧气条件下的荧光强度 I,经过反复实验并通过拟合得到 k_{sv},最终得到氧 气浓度为

$$x_{(o_2)} = \frac{G/R - 1}{k_{\rm SV}}.$$
 (2)

温度 T 由指示剂 Rh110 的绿光强度 G 和温敏 指示剂 AFC 的蓝光强度 B 之比来量化,即

$$T = k_{\rm T} \frac{G}{B} + t_{\rm o} , \qquad (3)$$

式中:k_T为温度系数;t₀为拟合常数。

3 氧/温度双传感器装置

3.1 实验试剂与仪器

(1) 实验试剂

制备双传感膜所用的实验试剂及相关参数如表 1 所示。

表1 实验试剂及相关参数

Table 1	Experimental	reagents an	nd related	parameters

Reagent	Reagent Supplier	
PtTFPP	Alfa Aesar	≥99.0%
Rh110	Alfa Aesar	≥99.0%
AFC	Sigma-Alorich	≥99.0%
TEOS	Sinopharm Chemical	≥95.0%
Octyl-tri EOS	Sinopharm Chemical	≥95.0%
TESPIC	Sinopharm Chemical	≥95.0%
Triton-X-100	Wuhan Shenshi	Chemical pure
THF	Wuhan Shenshi	Analytical pure

本项目中用于检测氧气的荧光指示剂 PtTFPP 是金属铂的一种配合物,其光化学、光物理信息丰 富,采用 405 nm 波长激发光进行激发,其激发态反 应活性高、寿命长、发光性能良好。

2) 实验仪器

双传感膜制备实验中所使用的仪器的名称、规 格型号及生产厂家如表2所示。

3.2 传感器的制备

在光学双传感器中,使用 TEOS/Octyl-tri EOS 作为复合溶胶的基质材料,通过将 0.2 mL 的 Octyltri EOS 与 4 mL TEOS 混合以形成前驱体溶液。 采用类似 Yeh 等^[11]的方法,将 EtOH (1.25 mL)和 HCl (0.4 mL)加入溶胶溶液中以催化 ormosil 反 应,并在室温下磁力搅拌 1 h。混合过程中,通过向 溶液中加入 Triton-X-100 (0.1 mL),可改善硅溶胶 的均匀性,产生无裂纹的整体。

	表 2 实验仪器一览表				
Table 2	List of experimental instruments				
Specification type					

Instrument	Specification type	Producer		
Magnetic heating stirrer	79-2	Jintan China		
Digital ultrasonic cleaner	KQ3200DB	Kunshan China		
Centrifuge	D-37520	Wuhan China		
Rotary evaporator	RE-52AA	Shanghai China		
Fluorescence spectrophotometer	F-7000	Hitachi High-Technologies		
Electron microscopes	SU8010	Hitachi High-Technologies		

通过将 2 mg 的 PtTFPP 溶解于 10 mL 的 THF、5 mg 的 Rh110 加入到 10 mL 的 EtOH 中来 制备氧传感器染料溶液。同时,通过将 2 mg 的 AFC 溶解于 10 mL 的 EtOH 和 TESPIC 中来制备 对温度敏感的染料溶液。然后通过将 PtTFPP/ THF 溶液(1 mL)、Rh110/EtOH 溶液(1 mL)和 AFC/TESPIC/EtOH 溶液(0.2 mL)混合到复合溶 胶溶液中来制备发光团掺杂的溶胶溶液,同时,将溶 胶混合物加盖并机械搅拌 10 min。最后,在室温下 使用溶胶-凝胶法^[12]制备 PtTFPP/THF,Rh110/ EtOH 和 AFC/TESPIC/EtOH 掺杂 的 TEOS/ Octyl-tri EOS 复合干凝胶,并在环境温度和黑暗条 件下储存直至使用。

借助于微量移液管,将2μL连续体积的混合物

涂覆在色彩传感器的活性区域上,并将其置于黑暗 中进行干燥处理。图1为涂覆颜色芯片的传感器示 意图。所有准备好的颜色传感器保存在黑暗环境 中,以避免光解。

3.3 检测装置

氧/温度双传感器性能检测的实验装置如图 2 所示。在传感实验中,双传感系统由配气仪、颜色芯 片(Hamamatsu Photonics, S9706)、控温设备、蓝牙 模块和电子电路组成。在气流控制阀的控制下将氮 气和氧气通入配气仪中,得到 0%~30%的任意氧 气浓度。用控温器将氧气的温度控制在 5~75 ℃间 的任意温度,控温器测量和控温精度都精确到小数 点后一位,同时窗口能同步显示实时温度和设定值。 颜色芯片将采集到的RGB值以12位数字信号形式传

图 1 传感器示意图。(a) 2 μL AFC 膜;(b) 2 μL PtTFPP 膜;(c) 2 μL Rh110 膜;(d) 2 μL 混合膜;(e)无膜 Fig. 1 Schematics of sensors. (a) 2 μL AFC film; (b) 2 μL PtTFPP film; (c) 2 μL Rh110 film; (d) 2 μL mixed film; (e) without film

Fig. 2 Dual-sensor performance detection device

0628004-3

输至蓝牙模块,利用单片机对信号进行处理和显示。

3.4 硬件与软件系统

便携式光学双传感系统的硬件功能框图如图 3 所示,包括颜色传感模块(LED和S9706)、控制单元 (MSP430单片机)、光源驱动及电源适配模块。氧 气和温度传感膜用中心波长为 405 nm 的近紫外 (UV)光激发,通过 S9706 将氧气浓度和温度信号 以12位数据输出。采集开始的36个脉冲,前12个 脉冲是红光强度,即氧气浓度信号;中间的12个脉 冲是绿光强度,即参考信号;最后12个脉冲是蓝光 强度,即温度信号。将采集的数据用蓝牙传入单片 机中,根据(2)、(3)式得到氧气浓度和温度,并在液 晶屏(LCD)上显示。

Fig. 3 Block diagram of hardware function of sensing system

实验分析 4

采用荧光分光光度计测定双传感膜的传感特 性,图 4 为固定在溶胶凝胶中的 PtTFPP、AFC 和 Rh110 在室温下的发射光谱,在 405 nm 的光源激 发下,650,478,560 nm 处显示出强烈的荧光发射。 图 4 中没有出现光谱重叠或串扰。此外, S9706 色 彩芯片对蓝色(波长范围为 440~520 nm,峰值为 460 nm)、绿色(波长范围为 520~600 nm,峰值为 540 nm)、红色(波长范围为 590~720 nm,峰值为 620 nm)三通道特征较为敏感,因而将传感膜覆盖 在颜色传感器的光敏区域上,可以同时检测氧气浓 度和温度。

4.1 氧传感膜的传感特性

氧气敏感材料在不同的氧浓度环境下的荧光光 谱如图5所示。由图5可知,随着氧气浓度的增大, 荧光强度逐渐降低,浓度越低则猝灭越明显,浓度越 高则猝灭逐渐减弱。

图 4 PtTFPP、AFC 和 Rh110 在室温下的荧光光谱 Fig. 4 Fluorescence spectra of PtTFPP, AFC, and Rh110 at room temperature

4.2 温度传感膜的传感特性

在温度特性测试中,温度较低时,恒温装置管道 会出现液化的水珠,样品池也如此。为避免空气液 化造成的影响,在25~75℃范围内对温度的敏感特 性进行测试。测得的荧光光谱响应曲线如图 6 所 示,随着温度的升高,传感膜的荧光强度下降。

4.3 结果讨论

滨松 S9706 芯片的工作温度范围为-20~ 85 ℃,在25 ℃下,荧光强度比值G/R 与0%~30% 范围内的氧气浓度符合线性关系,如图7所示,线性 拟合优度 $R^2 = 0.99457$ 。这表明氧气浓度越大,荧 光淬灭越强,即氧传感膜发出的红光越弱,R值 越小。

传感器的温度响应在 25~75 ℃范围内的测试 结果如图 8 所示,荧光强度比值 G/B 与温度的变化 符合线性关系,线性拟合优度 $R^2 = 0.99771$ 。这表 明温度越高,温敏指示剂发出的蓝光越弱,B值 越小。

通过已实现的便携式双传感器测定 10 个不同 浓度(3%~30%)和8个不同温度(5~75℃)下的 荧光强度,图9为取样求平均值所得的相对荧光强 度与氧气浓度的对应图。由图 9 可知,氧传感膜的 响应随温度的升高而减小,在高温下,发光猝灭对氧 的响应降低,即氧分子与氧气敏感材料的相互作用 时间更少。与氧气对 PtTFPP 材料的敏感性相比, AFC 温度传感器的荧光强度与氧气无关。

Oxygen concentration /% 图 9 不同温度下荧光强度与氧浓度的关系曲线 Fig. 9 Relationship between fluorescence intensity and

oxygen concentration under different temperatures

15

20

25

30

10

4.4 精度评估

1.0

0

5

根据新型便携式氧/温度双传感器测得的数据, 评估传感器的氧气浓度和温度检测精度。在0%~ 30%氧气浓度范围内各取样 10 次取平均值的测量 值和精度如表 3 所示,其精度范围为一4.83%~ 3.56%。温度在 5~75 ℃下的测量值和精度如表 4 所示,其精度范围为一17.60%~4.07%。

Table 3 Measurement value and accuracy of oxygen concentration										
Standard value / %	3	6	9	12	15	18	21	24	27	30
Measured value / %	2.88	5.71	9.32	11.58	15.23	18.39	21.36	24.41	27.22	30.15
Bias /%	-4.00	-4.83	3.56	3.50	1.53	2.17	1.71	1.71	0.81	0.50
表 4 温度测量值及其精度										
Table 4 Measurement value and accuracy of temperature										
Standard value /°C	5	15	25		35	45	55		65	75
Measured value / °C	4.12	14.26	24.8	36	34.17	46.83	56.24	6	3.85	72.85
Bias /%	-17.60	-4.93	-0.5	56 -	-2.37	4.07	2.25	—	1.77	-2.87

ble 3	Measurement	value and	accuracy	of	oxygen	concentration
			5		20	

5 结 论

提出了一种新型温度和氧气便携式光学双传感 器。双传感器采用的 PtTFPP 和 AFC 分别作为氧 气和温度的荧光指示剂,将 Rh110 作为荧光对照, 得出用传感膜涂覆颜色芯片来设计便携式光学双传 感装置是可行的结论。三种荧光剂均可用 405 nm 的 LED 激发并可以用来检测三个发射波长的荧光 强度值。因此通过分别计算参比荧光与敏感荧光的 峰值与发光强度的比值,可以获得氧气浓度和温度。 该双传感器对激发光强的波动不敏感。综上所述, 所开发的便携式光学双传感器结构简单,成本低廉, 可以同步检测温度和氧气(两个参量的检测偏差均 在 5%以内),可应用于温度补偿的氧气传感、地下 和深海勘测中的氧气浓度检测、各种生物养殖中氧 气浓度的监测及燃烧环境中氧含量和温度的检测。

参考文献

- Wolfbeis O S. Sensor paints [J]. Advanced Materials, 2008, 20(19): 3759-3763.
- [2] Semenza G L. Life with oxygen [J]. Science, 2007, 318(5847): 62-64.
- [3] Wang X D, Wolfbeis O S. Fiber-optic chemical sensors and biosensors (2013-2015) [J]. Analytical Chemistry, 2016, 88(1): 203-227.
- [4] Bohlin A, Nordström E, Carlsson H, et al. Pure rotational CARS measurements of temperature and relative O₂-concentration in a low swirl turbulent premixed flame [J]. Proceedings of the Combustion Institute, 2013, 34(2): 3629-3636.
- [5] Zhang J, Nuebel E, Wisidagama D R R, et al. Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells [J]. Nature Protocols, 2012, 7

(6): 1068-1085.

- [6] Clark L C, Jr, Wolf R, Granger D, et al. Continuous recording of blood oxygen tensions by polarography [J]. Journal of Applied Physiology, 1953, 6(3): 189-193.
- [7] Su F Y, Alam R, Mei Q, et al. Nanostructured oxygen sensor-using micelles to incorporate a hydrophobic platinum porphyrin [J]. PLoS ONE, 2012, 7(3): e33390.
- [8] Zhang P, Guo J H, Wang Y, et al. Incorporation of luminescent tris (bipyridine) ruthenium(II) complex in mesoporous silica spheres and their spectroscopic and oxygen-sensing properties[J]. Materials Letters, 2002, 53(6): 400-405.
- [9] Lee S, Park J W. Luminescent oxygen sensors with highly improved sensitivity based on a porous sensing film with increased oxygen accessibility and photoluminescence [J]. Sensors and Actuators B: Chemical, 2017, 249: 364-377.
- [10] Tu M D, Yin G F, Zhao N J, et al. Detection method of dissolved oxygen concentration in water based on time-domain fluorescence lifetime [J]. Acta Optica Sinica, 2018, 38(10): 1001005.
 涂梦迪,殷高方,赵南京,等.基于时域荧光寿命的 水体溶解氧浓度检测方法 [J].光学学报, 2018, 38 (10): 1001005.
- [11] Yeh T S, Chu C S, Lo Y L. Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices [J]. Sensors and Actuators B: Chemical, 2006, 119(2): 701-707.
- [12] Chen C H, Chen K, Meng L L, et al. Luminescence properties and Ce³⁺ → Tb³⁺ energy transfer in CaYAlO₄: Ce³⁺, Tb³⁺ phosphors [J]. Acta Optica Sinica, 2018, 38(1): 0116002.
 陈彩花,陈凯,蒙丽丽,等. CaYAlO₄: Ce³⁺, Tb³⁺ 荧光粉的发光性能及 Ce³⁺ → Tb³⁺ 的能量传递[J]. 光学学报, 2018, 38(1): 0116002.